Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Fourth Semester B.E. Degree Examination, Dec.2018/Jan.2019 Advanced Mathematics – II

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

- Prove that the angle between two lines whose direction cosines are (l_1, m_1, n_1) and (l_2, m_2, n_2) is $\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2$ (07 Marks)
 - b. Find the value of K if the angle between the lines with direction ratios -2, 1, -1 and 1, -K, -1 is $\frac{2\pi}{3}$. (07 Marks)
 - c. Find the projection of the line segment AB on CD where A = (3, 4, 5), B = (4, 6, 3), C = (-1, 2, 4), D = (1, 0, 5)
- Derive the equation of the plane in the intercept form $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. (07 Marks)
 - b. Find the image of the point (2, -1, 3) in the plane 2x + 4y + z 24 = 0. (07 Marks)
 - c. Find the equation of the plane containing the line $\frac{x+1}{2} = \frac{y+2}{3} = \frac{z+3}{4}$ and is perpendicular to the line x - 2y + 3z = 4. (06 Marks)
- Show that the position vectors of the vertices of a triangle 2i-j+k, i-3j-5k and 3i-4j-4k form a right angled triangle. (07 Marks)
 - Find the cosine and sine of the angle between the vectors 2i j + 3k and i 2j + 2k.

(07 Marks)

- c. Find the value of λ such that the vectors $\vec{a} = \lambda i 5j 2k$, $\vec{b} = -7i + 14j 3k$ and c = 11i + 4j + k are coplanar. (06 Marks)
- A particle moves along a curve $x = t^3 4t$, $y = t^2 + 4t$, $z = 8t^2 3t^3$. Determine its velocity and acceleration and also the magnitude of velocity and acceleration at t = 2.
 - b. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point
 - Find the directional derivative of the function $\phi = xyz$ along the direction of the normal to the surface $xy^2 + yz^2 + zx^2 = 3$ at the point (1, 1, 1)(06 Marks)
- If $\vec{F} = \nabla(x^3 + y^3 + z^3 3xyz)$ find div \vec{F} and curl \vec{F} . Show that curl(grad ϕ) = 0. (07 Marks)
 - (06 Marks)
 - Show that $\vec{F} = \frac{x\hat{i} + y\hat{j}}{x^2 + y^2}$ is both solenoidal and irrotational. (07 Marks)

- Find the Laplace transform of tⁿ, where n is a positive integer (05 Marks)
 - Find $L(\sin 5t \cos 2t)$. (05 Marks)
 - Find L(tcosat). (05 Marks)
 - Find $L\left(\frac{\cos at \cos bt}{t}\right)$. (05 Marks)
- a. Find $L^{-1} \left[\frac{s+5}{s^2 6s + 13} \right]$. (07 Marks)
 - b. Find $L^{-1} \left[\frac{1}{s(s+1)(s+2)(s+3)} \right]$. (07 Marks)
 - (06 Marks)
- Using Laplace transform solve $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = e^{-t}$, y(0) = 0 = y'(0)8 (10 Marks)
 - b. Using Laplace transform solve $\frac{dx}{dt} + y = \sin t$, $\frac{dy}{dt} + x = \cos t$ given x(0) = 1, y(0) = 0(10 Marks)